Role of Rho-kinase in maintaining airway smooth muscle contractile phenotype.

نویسندگان

  • Reinoud Gosens
  • Dedmer Schaafsma
  • Herman Meurs
  • Johan Zaagsma
  • S Adriaan Nelemans
چکیده

This study aims to investigate the role of Rho-kinase in phenotype switching and proliferation of bovine tracheal smooth muscle. To induce different phenotypic states, bovine tracheal smooth muscle strips were cultured (8 days) in 10% foetal bovine serum (foetal bovine serum, less contractile phenotype) or insulin (1 microM, hypercontractile phenotype) and compared to strips cultured in serum-free medium. In contraction experiments, the Rho-kinase inhibitor (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide (Y-27632, 1 microM) decreased sensitivity to methacholine and KCl and lowered maximal responsiveness to KCl in all strips irrespective of the phenotype present. To investigate the effects of Rho-kinase bovine tracheal smooth muscle phenotypic regulation, strips were pretreated with Y-27632 (1 microM) for 8 days. This resulted in a decreased maximal contractility to both methacholine and KCl, quantitatively comparable to the decrease in contractility induced by platelet-derived growth factor (PDGF, 10 ng/ml). The combination of Y-27632 and PDGF responded additively. Y-27632 did not affect basal or PDGF-induced bovine tracheal smooth muscle cell proliferation, determined both as increases in [3H]thymidine incorporation and cell number. Inhibitors of the p42/p44 mitogen-activated protein kinase (MAPK) pathway, the p38 MAPK pathway and the phosphatidyl inositol (PI) 3-kinase pathway all inhibited PDGF-induced proliferation and phenotype changes. These results show that the functional contribution of Rho-kinase to bovine tracheal smooth muscle contraction is not dependent on phenotypic state. In addition, Rho-kinase is not involved in phenotypic modulation or proliferation induced by PDGF, whereas p42/p44 MAPK, p38 MAPK and PI 3-kinase are. Rho-kinase is, however, a major regulator involved in the basal maintenance of contractility in bovine tracheal smooth muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness.

Smooth muscle contraction is mediated by Ca2+-dependent and Ca2+-independent pathways. The latter Ca2+-independent pathway, termed Ca2+ sensitization, is mainly regulated by a monomeric GTP binding protein RhoA and its downstream target Rho-kinase. Recent studies suggest a possible involvement of augmented RhoA/Rho-kinase signaling in the elevated smooth muscle contraction in several human dise...

متن کامل

Role of contractile prostaglandins and Rho-kinase in growth factor-induced airway smooth muscle contraction

BACKGROUND In addition to their proliferative and differentiating effects, several growth factors are capable of inducing a sustained airway smooth muscle (ASM) contraction. These contractile effects were previously found to be dependent on Rho-kinase and have also been associated with the production of eicosanoids. However, the precise mechanisms underlying growth factor-induced contraction ar...

متن کامل

Phophatidylinositol-3 kinase/mammalian target of rapamycin/p70S6K regulates contractile protein accumulation in airway myocyte differentiation.

Increased airway smooth muscle in airway remodeling results from myocyte proliferation and hypertrophy. Skeletal and vascular smooth muscle hypertrophy is induced by phosphatidylinositide-3 kinase (PI(3) kinase) via mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K). We tested the hypothesis that this pathway regulates contractile protein accumulation in cultured canine airway myocy...

متن کامل

Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype.

Airway smooth muscle (ASM) plays a key role in the development of airway hyperresponsiveness and remodeling in asthma, which may involve maturation of ASM cells to a hypercontractile phenotype. In vitro studies have indicated that long-term exposure of bovine tracheal smooth muscle (BTSM) to insulin induces a functional hypercontractile, hypoproliferative phenotype. Similarly, the extracellular...

متن کامل

Insulin increases the expression of contractile phenotypic markers in airway smooth muscle.

We have previously demonstrated that long-term exposure of bovine tracheal smooth muscle (BTSM) strips to insulin induces a functional hypercontractile phenotype. To elucidate molecular mechanisms by which insulin might induce maturation of contractile phenotype airway smooth muscle (ASM) cells, we investigated effects of insulin stimulation in serum-free primary BTSM cell cultures on protein a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of pharmacology

دوره 483 1  شماره 

صفحات  -

تاریخ انتشار 2004